ACKNOWLEDGEMENT
| would like to express my gratitude toward our group members: Angelo, Federico and Walid

Greate appreciation to our kind supervisors: Zubat and Ludovico

lcd1602 and how it works:

Schematic:

Al hanl Rl Rl Rl Bl Al

Pin definitions:

Pin 1 (Vss): Function as Ground Terminal.

Pin 2 (Vdd): Function as Positive Supply (2.7V to 5.5V).

Pin 3 (Vee): Function as Contrast adjustment (Ground to Vcc) .

Pin 4 (RS): Function as Register Select (If 0 is refer to Instruction Register and if 1 is refer toData
Register).

Pin 5 (R/W): Its function to Read or Write Signal (if 1 mean to Read and if O

mean to Write).

Pin 6 (E): Function as Enable (1) or Falling edge (0).

Pin 7 to Pin 14 (DBO — DB7) : Refer to Bi-directional data bus, data transfer is performed one,
through DBO to DB7, in this case of interface data length is 8-bits; and twice, through DB4 to
DB7 in this case of interface data length is 4-bits (Upper four bits first and then Lower four bits
more).

Pin 15 (K): Function to Back light LED cathode terminal.

Pin 16 (A): Function to Back light LED anode terminal.

How we connect it to DEO-NANO:
We connected pins according to what is mentioned in the DEO-NANO manual, here is the picture
of the port which we used:

GPIO 01
GPIO_03

GPIO_07

GPIO 08
GPIO_011
GPIO 013

GPIO 08
GPIO_010

GPIO_014
GPIO_Dib
GPIO_DIE
GPIO_020__ 2
GPIO_022

GPIO_D15
GPID_017
GPIO_018
GPIO_021
GPIO_023

|

VCC3IP30 GRIO 025

GPIO_027
GPIO_029
GPIO 031
GPIO_033

GPIO 024

Here is the connection map between LCD and GPIO-0:

GPIO 0 Header
JP1 1 Vvss
GPIO 0 DO 1 2 GPIO 0 D1 2
CPI0 0.2 31! 213 GPI0 0 03 35— VBD
GFI0 0 D4 513 416 GPIO 0 05 VEE
GFI0 006 715 83 100 D7
GFI0 0 D8 9|7 &[0 GPI0_0 D0 @ 04 =21 Rrs
7119 1014 \ DG —>
GPI0 0010 |11 1207z GPIOUDH:\ 51 RW
GPIO 0 D12 15113 1476 GPIOUD13\ D8 E
GPID_ 0. D74 715 1878 GPID 0 D15
TGP0 0 D76 19|17 1820 TR0 0 D17 A S
GFI0 0 D18 21|19 D3 TGP0 0 DIo® B
GPI0 0 D20 2|21 217 GPIOUDE?.\ s |oh
GPI0_0_D22 7523 24755 GPIOUDES\ D2
GPI0_0_D24 27| %5 e | 5 113 D3
29 30
VeCIBO—pm 105 3|2 0[p GPIO 0 D27 121 B4
GPIO 0 D28 33|31 837 GPIO 0 D29 5108
T BB M3 GPIO 0 D31 D6
GPI0_0_D32 37 3? gg 38 100 14 1 o7
GPI0 0 D34 39|37 % GPID 0 D35 _ }g LEDA
?\T\ LEDK

Important observation: please take in to account that ground for both FPGA and LCD should be
the same otherwise LCD won’t be initialized.

How to drive LCD:
In order to be able to send characters to be shown on LCD firstly, we need to send some

initialization instruction to LCD. To do so we should check the datasheet of the LCD first, then
start sending instruction according to following steps for each instruction:

1- Send bit stream of 8 bits instruction on data pins and RS=0, R/W=0, E=0
2- Keep the same stream of 8 bits of instruction on data pins and, R$=0, R/W=0, E=1
3- It is mandatory to wait for at least more than 40 us (processing time of each instruction)

Initialization commands:

In page 4 a list of initialization commands is tabulated and in page 5 a flowchart proposing how
to do initialization steps is depicted and in page 6 there is a tabulated example and from the
page 7 on there is a sample VHDL code showing how to do initialization and write some
characters on LCD with a Finite State Machine.

Instruction Set

KE|EK|D|D|D|(D|D|D|D|D EXECT.
FUNCTION (S |"W|B|B|B|B|B|B|B|B DESCRIPTION TIAME=
TI6|s|4 (32|10 (MAX)
ClearDisplay (0 JO |0 |0 |0 [0 |0]0]0]1 |Clears entie dizplay and returns the cursor to home 1.6dms
position (addresz 0).
ReturnHome [0 [O[O [0 |0 [0 |0 0|1]|x |Returnthe curser to the home position. Also retwns the| 1.64ms
display bemng shifted to the ongnal posinon. DD BAM
contents remain unchanged.
Entry mode Set cursor move direct and specifies display shift These| 403
et I operations are performed during data rite read. For
OO0 |O|O[0O|0]|1]| /]S |normal operation. set 5 to zero. I'D=1 : increment ;
D {0 :decrement ;5=1 : accompanies display shuft when
data 12 written. for normal operation. set to zero.
Display Set QN/OFF zll display(D).cursor ON/OFF(C), and A0 s
ON/OFF 010]0]0]0]|0]|1]|D|C|B |blink of cursor posthon character(B). D=1: ON display;
control 0:0FF display. C=1: ON curzor;0: OFF curser. B=1:
ON blink cursor; 0: OFF blink cursor.
Cursor or SR Move the cursor and shuft the display without chanzinz | 405
Display gjo|l0o|0(0|1]|/ |/]|=x]|x |DDEAM contents. 5/C=1: Display shift; 0:Cursor
shift C|L move. R'L=1: shift to right: 0: shift to left.
Fanction Set the interface data length (DL). Number of display 40
Set 0]J]0]0|0|1|D|N|F|=x|=x |hnes(N)and character font (F). DL=1: 3 bats; 0:4 bits.
L N=1:2 lines; 0:] lines. F=1: 5x10 dots: 0: 5x7 dots.
SetCGRAM |0 |0 O (1 ACG Set CG RAM address. CG RAM data1s sent and s
address recerved after this sethng.
Set DDRAM | 0 | 0O | 1 ADD Set DD RAM address. DD RAM data 1s sent and s
address received after this setng
Read busy FReads Busy Flag (BF) indicating internal operation 15 1 ps
flag & 0|1 |B AC being performed and reads address counter contents.
addre:s F BF=1: internally operating. (: can aceept Inthuction
Write Datato | 1 | O WEITE DATA Wnite data into DD FAM or CG FAML Wps
CGCDDEAAM
ReadDatafor| 1 | 1 READDATA Read data from DD RAM or CG RAM Hps
CGDDERAA
Bit Settings
I/D 0= Decrement cursor 1 = Increment cursor position
position
S 0= Nodisplay shift 1 = Display shift
D 0= Display off 1 = Display on
C 0=_Cursor off 1 = Cursor on
B 0= Cursor blink off 1 = Cursor blink on
S/IC 0= Move cursor 1 = Shift display
R/L 0= Shift left 1 = Shift right
DL 0= 4-bitinterface 1 = 8-bit interface
N 0=1/8or1/11 Duty (1 line) 1 =1/16 Duty (2 lines)

F 0 = 5x7 dots

BF 0= Can accept instruction

1 =5x10 dots

1 = Internal operation in
progress

1

1)

8 Bit Interface

Powsr On

| Wat 15 ms or more after Vg, reackes 4 5V |

2) 4 Bit Interface

Powsr On

|

| Wait 1% ms or more after Ve reachss 4.5V

Busy flag can't be chocked.

Function set - § bis
RS|RW|DB7|DBS|DBS5|DB+4|DB3|D82| DB | DBC RS| RW DB7 DB§ D8S o84
0] 0 0 0 | 1 ¢ . ¢ ¢ 0 0 0 0 1 1
| |
| Wardlmiormom | | Watdlosormos |
Busy flag can't be checked
Fancton set - § bits
[RC|EW |D5 | DBE |05 |05+ | DB3 |DB2| DB1 | DBO [RS] RW | DB) | DBé | DBS | DB+
010 0 0 | 1 ¢ ¢ ¢ ' 0 0 0 0 1 1
| |
. Wait 100 us or mors | Wat 100 us or ore |
_B*J}'ﬂx;can':bochu‘ud befors this istruction
Fanction set : § bits
RS [R.W |DB 7| DBA DB |D5+4| DB3 | DB2| DB1] DBO) RS| AW | DB] | DBs | DB | Dbe
Q] 0 0 0 1 1 ¢ ¢ ’ ¢ 0 0 0 0 1 1
- —| Function set : § bits }
_ — RE| RW DB7 DB§ DBS DB4
RS|RW|DB7|DB6 |[DBS|D B3|DB2| DB |DBO 0 0 0 0 1 1
010 0 0 1 1| N|F ¢ . Fuscton Set 0 0 0 0 1 0
ol o | ¥ | F ' ‘
0] 0 0 0 0 0 0 0 0 Display OfF 0 0 0 0 0 0
. B 0 1 0 0 0
0] 0 0 0 ¢ 0 0 0 0 1 Display Clear 0 0 0 0 0 0
0 0) 0 0 1
0] ¢ 0 0 G 0 0 1 |ID| S |] EooyMedeSet || O 0 0 0 0 0
0 0 0 1 1D 5
| |
End of End of
Izotalization Imtalization

Software Example

S-bit operation { 8 bits ? lines)

CO._LTD.

Function E(E|D|D|D I Dy Iv| Db Dizplay Description
Slw|T|6|5|4]3]2]1(0
Power on delay Imitialization. No display appears.
Sets to 8-bit operation and selects 2-line dizplay and 5x7
Function et O (0o @11 (0)0|x|x dots character font. (Note: nomber of display line: and
character fonts cannet be chang after this.)
Display OFF O [0 (D |0 |00 1 |0 |0 (O Turn off display.
Display ON LI O L O Turn on display and corser
Entry Mode _ Set mode to increment the address by one and to shift the
Set 0 (0 0 0 [0 |0 {01 |1 | cursor to the right, at the tme of write, to the DDVOG BEAM
Diizplay is not shifted.
(Write data to |1 [0 [0 1 |01 |0 [D]1]1 |5_ Write “57. Curser incremented by one and shift to right.
JICGDD BAM
(Write datato (1 [0 (O |1 |0 |0 |0 |1 |0 |k |SDEC_ Write “D” | “E™ , amd “C™.
ICGDD EAM (1 (0 (0 (1 [0 |2 |0 1 0|1
1[0 (0|1 |0)0)oijojlfl
SetDD EAM |0 |0 (1 (1 |00 [0 (00|06 |SDEC Set BLAM address so that the corsor is propositioned
at the head of the second line.
(Write data to * SDEC Write “C | amd “R".
JCGDD BRAM * CR
Cursor or LU |[I 001Dz x |SDEC Shift only the corsor position to the left.
display shift CE
(Write data to * SDEC Write “0_LTD.".
ICGDD BAM * LD, LTD.
Entry Mode L[] |[I O f0jejo@d|ll |SDEC Set dizplay mode shift at the time doring wrifing operation.
Set L LT,
[Write data to | DEC Write “ 1. Cursor incremented by one and shift to
ICGDDEAM (1 (0)0]1 |1 |11 o]0 (O, LTDh.x right. [The display move to left.)
(Write data to * Write other characters.
JCGDD EAM i
Eeturn Home | o000 o)1 |SDEC Eeturn both display and carsor to the original position

{ Set address to zero).

VHDL sample code:

--Necessary Header Files
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

--Define The Core Entity
ENTITY LCD IS
PORT(
--Counter/VGA Timing
CLK :IN STD_LOGIC;

--LCD Control Signals

LCD_ENABLE : OUT STD_LOGIC;
LCD_RW :OUT STD_LOGIC;
LCD_RS : OUT STD_LOGIC;

--LCD Data Signals

LCD_DATA :OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
end LCD;

--Define The Architecture Of The Entity
ARCHITECTURE behavior of LCD IS

type state_type is (SO, S1, S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S12,S13, S14, 515, S16, S17, 518, S19,
S20, S21, S22, S23,S24,S25, 526, S27, 528, S29,
S30, S31, S32, S33, S34, S35, S36, S37, S38, S39,

S40,541,542,543,544,545,546,547,548,IDLE);
signal next_state: state_type;

BEGIN

PROCESS
VARIABLE cnt: INTEGER RANGE 0 TO 17500000;
BEGIN

WAIT UNTIL(cIk'EVENT) AND (clk ='1");

--Count Clock Ticks
IF(cnt = 1750000)THEN
cnt :=0;
ELSE
cnt:=cnt +1;
END IF;

--Slowly Move Into Next States
IF(cnt = 1500000)THEN

--Next State Logic

case next_state is

Function Set
when SO =>
next_state <=S1;

LCD_DATA <="00111000";

LCD_ENABLE <='0";

LCD_RW <="0"
LCD RS <="'0"
when S1 =>

next_state <=S2;

LCD_DATA <="00111000";

LCD_ENABLE <="1}

LCD_RW <="0"
LCD_RS <="0"
when S2 =>

next_state <=S3;

LCD_DATA <="00111000";

LCD_ENABLE
LCD_RW
LCD_RS

Reset Display -
when S3 =>

next_state <= S4;

LCD_DATA
LCD_ENABLE
LCD_RW
LCD_RS

when S4 =>

next_state <=S5;

LCD_DATA
LCD_ENABLE
LCD_RW
LCD_RS

when S5 =>

next_state <= S6;

LCD_DATA

LCD_ENABLE
LCD_RW
LCD_RS

Display On
when S6 =>

next_state <=S7;

LCD_DATA

<="00000001";

<="00000001";

<="00000001";

<="00001110";

LCD_ENABLE <='0';

LCD_RW <="'0"
LCD_RS <="'0"
when S7 =>

next_state <=S8§;

LCD_DATA <="00001110"

LCD_ENABLE <="1};

LCD_RW <='0";
LCD_RS <="0";
when S8 =>

next_state <=S9;

LCD_DATA <="00001110"%

LCD_ENABLE <='0"

LCD_RW <='0";
LCD_RS <='1";
Write 'R’
when S9 =>
next_state <=S10;
LCD_DATA <=x"52";
LCD_ENABLE <="1};
LCD_RW <='0}
LCD_RS <='1";
when S10 =>

next_state <=S11;

LCD_DATA <=x"52";

LCD_ENABLE <='0%

LCD_RW <=0

LCD_RS <="1"
WRITE 'A'
when S11 =>
next_state <=S12;
LCD_DATA <=X"41"
LCD_ENABLE <="1";
LCD_RW <="0"
LCD_RS <="1"
when S12 =>
next_state <=S13;
LCD_DATA <= X"41";
LCD_ENABLE <="'0"
LCD_RW <="0"
LCD_RS <="1";
-WRITE 'M'
when S13 =>
next_state <=S14;
LCD_DATA <= X"4D";
LCD_ENABLE <="1"
LCD_RW <='0";
LCD_RS <="1";
when S14 =>
next_state <= S15;
LCD_DATA <=X"4D";

LCD_ENABLE <='0";
LCD_RW <='0"
LCD_RS <='1"

WRITE 'blank'------------=------
when S15 =>
next_state <=S16;
LCD_DATA <= X"10";

LCD_ENABLE <="1};

LCD_RW <="'0';

LCD_RS <="1"
when S16 =>

next_state <=S517;

LCD_DATA <= X"10"

LCD_ENABLE <="0";

LCD_RW <="0";
LCD_RS <="1";
WRITE 'T'
when S17 =>
next_state <= S18;
LCD_DATA <=X"54";
LCD_ENABLE <="1"%
LCD_RW <='0"
LCD_RS <="1";
when S18 =>
next_state <=S19;
LCD_DATA <= X"54";
LCD_ENABLE <="'0"
LCD_RW <="0"
LCD_RS <="1";
WRITE 'E'
when S19 =>

next_state <= S20;
LCD_DATA <= X"45";

LCD_ENABLE <="1}

LCD_RW <='0';

LCD_RS <="1";
when S20 =>

next_state <=S21;

LCD_DATA <= X"45",

LCD_ENABLE <="0"

LCD_RW <="0"
LCD_RS <="1"%
WRITE 'S
when S21 =>
next_state <=S22;
LCD_DATA <= X"53";
LCD_ENABLE <="1"
LCD_RW <="0";
LCD_RS <="1"
when S22 =>
next_state <=S23;
LCD_DATA <=X"53";
LCD_ENABLE <="0";
LCD_RW <="0";
LCD_RS <="1"
WRITE 'T'
when S23 =>
next_state <= S24;
LCD_DATA <= X"54";

LCD_ENABLE <='1"
LCD_RW <='0"
LCD_RS <='1"

when S24 =>

next_state <= S25;
LCD_DATA <= X"54",

LCD_ENABLE <="0'

LCD_RW <="'0";
LCD_RS <="'1";
WRITE 'E'
when S$25 =>
next_state <= 526;
LCD_DATA <= X"45";
LCD_ENABLE <="1"
LCD_RW <="0"
LCD_RS <="1";
when S26 =>
next_state <=S27;
LCD_DATA <= X"45";
LCD_ENABLE <="0"
LCD_RW <="0"
LCD_RS <="1";
-WRITE 'R’
when S27 =>
next_state <= S28;
LCD_DATA <= X"52";
LCD_ENABLE <="1"
LCD_RW <='0";
LCD_RS <="1";
when S28 =>
next state <=S29;
LCD_DATA <= X"52";

LCD_ENABLE <='0";
LCD_RW <='0';

LCD_RS <="1;

WRITE 'new line'
when S29 =>
next_state <= S30;

LCD_DATA <="11000000";

LCD_ENABLE <='0';

LCD_RW <="'0";
LCD_RS <="'0";
when S30 =>

next_state <=S31;

LCD_DATA <="11000000";

LCD_ENABLE <="1}

LCD_RW <="0"
LCD_RS <="0"
when S31 =>

next_state <=S32;
LCD_DATA <="11000000";

LCD_ENABLE <='0%

LCD_RW <='05
LCD_RS <="0}
WRITE 'W
when S32 =>
next_state <=S33;
LCD_DATA <=X"57";

LCD_ENABLE <="1};
LCD_RW <='0";
LCD_RS <='1}

when S33 =>
next_state <= S34;
LCD_DATA <= X"57";

LCD_ENABLE <="0%

LCD_RW <='0';
LCD_RS <="1"
WRITE 'E'
when S34 =>
next_state <=S35;
LCD_DATA <= X"45";
LCD_ENABLE <="1"
LCD_RW <="0"
LCD_RS <="1"
when S35 =>
next_state <= S36;
LCD_DATA <= X"45";
LCD_ENABLE <="'0"
LCD_RW <='0";
LCD_RS <="1";
WRITE 'E' 2
when S36 =>
next_state <= S37;
LCD_DATA <= X"45";
LCD_ENABLE <="1"
LCD_RW <="0"
LCD_RS <="1";
when S37 =>
next state <= S38;
LCD_DATA <= X"45";

LCD_ENABLE <="0"

LCD_RW <='0";

LCD_RS <="1"
WRITE 'E' 3
when S38 =>
next_state <= S39;
LCD_DATA <= X"45";

LCD_ENABLE <="1";

LCD_RW <="'0";

LCD_RS <="1"
when S39 =>

next_state <= S40;

LCD_DATA <= X"45";

LCD_ENABLE <='04

LCD_RW <='0"
LCD_RS <="1"
WRITE 'O -

when S40 =>
next_state <=S541;
LCD_DATA <= X"4F";
LCD_ENABLE <="1"
LCD_RW <="'0"
LCD_RS <="1"

when S41 =>
next_state <=S542;
LCD_DATA <= X"4F";
LCD_ENABLE <="'0"
LCD_RW <="'0"
LCD_RS <="1";

------------------ WRITE 'P'
when S$42 =>

next_state <= 543;

LCD_DATA <=X"50"

LCD_ENABLE <="1"

LCD_RW <="'0"

LCD_RS <="1"
when $43 =>

next_state <= S44;

LCD_DATA <= X"50";

LCD_ENABLE <="0%

LCD_RW <='0";
LCD_RS <="1";
WRITE 'E'
when S44 =>
next_state <= 5$45;
LCD_DATA <= X"45";

LCD_ENABLE <='1';

LCD_RW <="0"

LCD_RS <="1";
when S45 =>

next_state <= S46;

LCD_DATA <= X"45"

LCD_ENABLE <="04

LCD_RW <="'0"
LCD_RS <="1"
WRITE 'N'
when S46=>
next_state <=S547;
LCD_DATA <= X"4E";

LCD_ENABLE <='1"
LCD_RW <='0'
LCD_RS <='1"

when S47 =>

next_state <= 548;

LCD_DATA <= X"4E";

LCD_ENABLE <="0";

LCD_RW <="'0%

LCD_RS <="1"
when S48 =>

next_state <= IDLE;

when IDLE =>
next_state <= IDLE;

when others =>
next_state <= IDLE;

end case;

END IF;

END PROCESS;

END behavior;

Created by: Masoud Soltanian at WEEEOPEN laboratory, POLITECNICO DI TORINO, Italy
March 2019
http://weeeopen.polito.it/

